- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Spiwok, Vojtěch (2)
-
Ackloo, Suzanne (1)
-
Armstrong, Blake I (1)
-
Arrowsmith, Cheryl H (1)
-
Arsiccio, Andrea (1)
-
Aureli, Simone (1)
-
Ballabio, Federico (1)
-
Ban, Fuqiang (1)
-
Barden, Christopher J (1)
-
Beck, Hartmut (1)
-
Berenger, Francois (1)
-
Bernetti, Mattia (1)
-
Beránek, Jan (1)
-
Bolotokova, Albina (1)
-
Bonati, Luigi (1)
-
Bonomi, Massimiliano (1)
-
Bret, Guillaume (1)
-
Breznik, Marko (1)
-
Brookes, Samuel_G H (1)
-
Brotzakis, Z Faidon (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In computational physics, chemistry, and biology, the implementation of new techniques in shared and open-source software lowers barriers to entry and promotes rapid scientific progress. However, effectively training new software users presents several challenges. Common methods like direct knowledge transfer and in-person workshops are limited in reach and comprehensiveness. Furthermore, while the COVID-19 pandemic highlighted the benefits of online training, traditional online tutorials can quickly become outdated and may not cover all the software’s functionalities. To address these issues, here we introduce “PLUMED Tutorials,” a collaborative model for developing, sharing, and updating online tutorials. This initiative utilizes repository management and continuous integration to ensure compatibility with software updates. Moreover, the tutorials are interconnected to form a structured learning path and are enriched with automatic annotations to provide broader context. This paper illustrates the development, features, and advantages of PLUMED Tutorials, aiming to foster an open community for creating and sharing educational resources.more » « lessFree, publicly-accessible full text available March 7, 2026
-
Li, Fengling; Ackloo, Suzanne; Arrowsmith, Cheryl H; Ban, Fuqiang; Barden, Christopher J; Beck, Hartmut; Beránek, Jan; Berenger, Francois; Bolotokova, Albina; Bret, Guillaume; et al (, Journal of Chemical Information and Modeling)The CACHE challenges are a series of prospective benchmarking exercises to evaluate progress in the field of computational hit-finding. Here we report the results of the inaugural CACHE challenge in which 23 computational teams each selected up to 100 commercially available compounds that they predicted would bind to the WDR domain of the Parkinson’s disease target LRRK2, a domain with no known ligand and only an apo structure in the PDB. The lack of known binding data and presumably low druggability of the target is a challenge to computational hit finding methods. Of the 1955 molecules predicted by participants in Round 1 of the challenge, 73 were found to bind to LRRK2 in an SPR assay with a KD lower than 150 μM. These 73 molecules were advanced to the Round 2 hit expansion phase, where computational teams each selected up to 50 analogs. Binding was observed in two orthogonal assays for seven chemically diverse series, with affinities ranging from 18 to 140 μM. The seven successful computational workflows varied in their screening strategies and techniques. Three used molecular dynamics to produce a conformational ensemble of the targeted site, three included a fragment docking step, three implemented a generative design strategy and five used one or more deep learning steps. CACHE #1 reflects a highly exploratory phase in computational drug design where participants adopted strikingly diverging screening strategies. Machine learning-accelerated methods achieved similar results to brute force (e.g., exhaustive) docking. First-in-class, experimentally confirmed compounds were rare and weakly potent, indicating that recent advances are not sufficient to effectively address challenging targets.more » « lessFree, publicly-accessible full text available November 5, 2025
An official website of the United States government
